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Leapfrog Networks



Filter Design/Synthesis Approaches
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Cascaded Biquads

Leapfrog

Multiple-loop Feedback – One type shown 
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Leapfrog Filters
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Introduced by Girling and Good, Wireless World, 1970

This structure has some very attractive properties and is widely used though

the real benefits and limitations of the structure are often not articulated 

Review from last lecture



Leapfrog Filters
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Observation:   This structure appears to be dramatically different 

than anything else ever reported and it is not intuitive why this 

structure would serve as a filter, much less, have some unique and 

very attractive properties

To understand how the structure arose, why it has attractive properties,

and to identify limitations, some mathematical background is necessary

Review from last lecture



Background Information for Leapfrog Filters

Theorem 1:  If the LC network delivers maximum power to the load at 

a frequency  ω, then

for any circuit element in the system except for x = RL 

 
0

T jω

x
S 

RS

RLVIN VOUT

LC 

Network

This theorem will  be easy to prove after we prove the following theorem:

Assume the impedance RS is fixed

Review from last lecture



Implications of Theorem 1
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Many passive LC filters such as that shown below exist that have near

maximum power transfer in the passband

 T jω

ω

If a component in the LC network changes a little, there is little change

in the passband gain characteristics (depicted as bandpass)

in passband T j

x
0S 
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Implications of Theorem 1

If a component in a biquad changes a little, there is often a large  change

in the passband gain characteristics (depicted as bandpass)
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Implications of Theorem 1
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Good doubly-terminated LC networks often much less sensitive to

most component values in the passband than are cascaded biquads !

This is a major advantage of the LC networks but can not be applied practically

in most integrated applications or even in pc-board based designs
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Lossless LC Network

Doubly-terminated Ladder Network with Low Passband Sensitivities

For components in the LC Network observe

k

k

1
Y

sL
 k

k

1
Z

sC
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Lossless LC Network

Doubly-terminated Ladder Network with Low Passband Sensitivities

 1 0 2 1I V V Y 

 2 1 3 2V I I Z 

 3 2 4 3I V V Y 

 4 3 5 4V I I Z 

 6 5 7 6V I I Z 

8 7 8V I Z

 5 4 6 5I V V Y 

 7 6 8 7I V V Y 

Complete set of independent equations

that characterize this filter

All sensitivity properties of this 

circuit are inherently embedded in 

these equations!  

Solution of this set of equations is tedious
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Lossless LC Network

Consider now only the set of equations and disassociate them from 

the circuit from where they came

 1 0 2 1I V V Y 

 2 1 3 2V I I Z 

 3 2 4 3I V V Y 

 4 3 5 4V I I Z 

 6 5 7 6V I I Z 

8 7 8V I Z

 5 4 6 5I V V Y 

 7 6 8 7I V V Y 

Make the associations

1 1I V '

3 3I V'

5 5I V'

7 7I V'

 1 0 2 1V V V Y'  

 2 1 3 2V V V Z' ' 

 3 2 4 3V V V Y'  

 4 3 5 4V V V Z' ' 

 6 5 7 6V V V Z' ' 

8 7 8V V Z'

 5 4 6 5V V V Y'  

 7 6 8 7V V V Y'  

Rewrite the equations as

This association is nothing more than a renaming

of variables so all sensitivities WRT Y’s and Z’s will

remain unchanged!
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Lossless LC Network

Consider now only the set of equations and disassociate them from 

the circuit from where they came

 1 0 2 1V V V Y'  

 2 1 3 2V V V Z' ' 

 3 2 4 3V V V Y'  

 4 3 5 4V V V Z' ' 

 6 5 7 6V V V Z' ' 

8 7 8V V Z'

 5 4 6 5V V V Y'  

 7 6 8 7V V V Y'  

k

k

1
Y

sL
 k

k

1
Z

sC


For the LC filter, recall

 1 0 2

1

1
V V V

R

'  

 2 1 3

2

1
V V V

sC

' ' 

 3 2 4

3

1
V V V

sL

'  

 4 3 5

4

1
V V V

sC

' ' 

 6 5 7

6

1
V V V

sC

' ' 

8 7 8V V R'

 5 4 6

5

1
V V V

sL

'  

 7 6 8

7

1
V V V

sL

'  

These can be written as

Observe that in the new 

parameter domain the equations 

all look like integrator functions 

if the primed and unprimed 

variables are all voltages !

1

1

1
Y

R


8 8Z R

And the source and load termination relationships were
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Lossless LC Network

Consider now only the set of equations and disassociate them from 

the circuit from where they came
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Observe that in the new parameter domain the equations all look like 

integrator functions if the primed and unprimed variables are all voltages !

If any circuit is characterized by these equations, the sensitivities to the 

integrator gains will be identical to the sensitiviies of the original circuit to 

the Ls and Cs !



Y1 Y3

Z2

I1 I3V2
Y5

Z4

I5V4
Y7

Z6

I7V6

Z8

V8 =VoutVin=V0

Vin

Lossless LC Network

Consider now only the set of equations and disassociate them from 

the circuit from where they came

 1 0 2

1

1
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R
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Each equation corresponds to either an integrator or summer with the output

voltage output variables and the gain indicated (don’t worry about the units)

0 inV V
8 outV V



Y1 Y3

Z2

I1 I3V2
Y5

Z4

I5V4
Y7

Z6

I7V6

Z8

V8 =VoutVin=V0

Vin

Lossless LC Network

Consider now only the set of equations and disassociate them from 

the circuit from where they came
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The interconnections that complete each equation can now be added
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Lossless LC Network

Consider now only the set of equations and disassociate them from 

the circuit from where they came

0 inV V
8 outV V
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Integrators Corresponding to Lossless Network 
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Lossless LC Network

The Leapfrog Configuration 

0 inV V 8 outV V

Input summing and weighting can occur at input to the first integrator

The difference between V8 and V’7 is only a scale factor that does not affect shape, 

and the weighting on the Vin input also does not affect shape, thus

Integrators Corresponding to Lossless Network 
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Integrators Corresponding to Lossless Network 
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Integrators Corresponding to Lossless Network 
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Lossless LC Network

The Leapfrog Configuration 

The terminations on both sides have local feedback around an integrator

which can be alternately viewed as a lossy integrator 

Could redraw the structure as a cascade of internal lossless integrators with

terminations that are lossy integrators but since there are so many different 

ways to implement the integrators and summers, we will not attempt to 

make that association in the block diagram form but in most practical 

applications a lossy integrator is often used on the input or the output or 

both
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Consider the first two stages:

2

1
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5
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 1 0 2

1

1
V V V

R

'  

 2 1 3

2

1
V V V

sC

' ' 

 2 0 2 3

1 2

1 1
V V V V

R sC

' 
   
 

1
2 IN 3

1 2 1 2

R1
V V V

1 R C s 1 R C s

'   
    

    

These two blocks act as a single summing lossy integrator block with loss factor R1
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Lossless LC Network

Consider the last two stages:
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These two blocks act as a lossy integrator block with loss factor Rn

n 1
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sL 
nR

n 1
'V 
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n 2V 

n n 1 nV V R'
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Implementation with Miller Integrators:
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R

R CB

RA RA

BV
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3
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Can fix either R or C on each stage
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Implementation with OTA-C  Integrators:

B

1

sC

AV

CV

BV
B A C

B B

1 1
V V V
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Can fix either gm or C on each stage
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The Leapfrog Configuration 

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

In the general case, this can be redrawn as shown below 

Note the first and last integrators become lossy because of the local feedback

Integrators Corresponding to Lossless Network 
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Lossless LC Network

The Leapfrog Configuration 

The passive prototype filter from which the leapfrog was designed has

all shunt capacitors and all series inductors and is thus lowpass.

The resultant leapfrog filter has the same transfer function and  is thus lowpass

Integrators Corresponding to Lossless Network 
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The Passive Prototypes with Maximum Power 

Transfer in Passband

Doubly-terminated LC filters with near maximum power transfer in the passband 

were developed from the 30’s to the 60’s

Seldom discussed in current texts but older texts and occasionally software tools 

provide the passive structures needed to synthesize leapfrog networks

One good book is that by Zverev



The Passive Prototypes with Maximum Power 

Transfer in Passband

Must start with correct filter type:

(e.g. BW, CC, Cauer)



The Passive Prototypes with Maximum Power 

Transfer in Passband

Loading element is a shunt capacitor

Loading element is a series inductor

The Butterworth Low-Pass Filters

(appear from top to bottom in table)

(appear from bottom to top in table)

Can do Thevenin-Norton Transformations



The Passive Prototypes with Maximum Power 

Transfer in Passband

Normalized so RL=1





Example:

Design a 6th-order BW lowpass Leapfrog filter with equal source and load 

terminations,  and with a 3dB band edge of 4KHz.

Start with the normalized BW lowpass filter

(appear from top to bottom in table)

Do Norton to Thevenin transformation at input



Rs=1,  C1=.5176, L2=1.414, C3=1.939, L4=1.9319, C5=1.4142, L6=0.5176

Note index differs by 1 from that used for Leapfrog formulation
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R1=1,  C2=.5176, L3=1.414, C4=1.939, L5=1.9319, C6=1.4142, L7=0.5176

Changing the index notation:

Implement in the technology of choice

Combine loss on input and output integrators to eliminate two stages

Do frequency denormalization to obtain band-edge at 4KHz

Do impedance scaling to obtain acceptable component values

Labeled voltages are single-ended voltages at “+” inputs to the integrators



Bandpass Leapfrog Structures

2 2
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



2
n n

s1

s s s BW 1

nBW

 


  

Consider lowpass to bandpass transformations

Un-normalized Normalized



Bandpass Leapfrog Structures

2 2
0

n

s
s

s

ω

BW


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2 2
n 0

1 s

s s

BW

ω


 2 2
n 0

1 s

s s s BW

BW

ω 


  

Bandpass Leapfrog Structure obtained by replacing integrators

by the corresponding transformed block

Zero sensitivity to parameters in the transformed blocks will be 

retained  at the image frequencies of the bandpass filter

Integrators map to bandpass biquads 

with infinite Q
Lossy integrators map to bandpass biquads 

with finite Q



Bandpass Leapfrog Structures
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Bandpass Leapfrog Structures
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Third-order lowpass 

leapfrog filter

Sixth-order bandpass 

leapfrog filter



Bandpass Leapfrog Structures
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“Loss” at input and/or output can usually be incorporated into  finite-Q

terminating biquads instead of requiring additional voltage amplifiers 



Bandpass Leapfrog Structures
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• The bandpass biquads can be implemented with various architectures and the 

architecture does not ideally affect the passband sensitivity of the filter

• Integrator-based biquads are often used in integrated applications

• Note the lossless biquads are infinite Q structures !

Is it easy or practical to implement infinite Q biquads?

Are there stability concerns about the infinite Q biquads?



Bandpass Leapfrog Structures
 
2 2

0

s

s

BW
C

ω

Biquads  Corresponding to Lossless Network 

1

1

R 5R
1
'V 3

'V2V 4V 5V
0V  

2 2
0

s

s

BW
C

ω

 
2 2

0

s

s

BW
C

ω

Integrator-based biquads
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Bandpass Leapfrog Structures
Integrator-based biquads
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OTA-C Implementations

(Concept)
Infinite Q bandpass biquad

Finite Q bandpass biquad

(Not Differential)

(Not Differential)



Bandpass Leapfrog Structures
Integrator-based biquads
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OTA-C Implementations

Infinite Q bandpass biquad
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Multiple inputs can be added to lossy integrator too!
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Note the lossless biquads are infinite Q structures !

Is it easy or practical to implement infinite Q biquads?

Are there stability concerns about the infinite Q biquads?

Yes – have shown by example in gm-C family and also easy in other 

families

Stability of overall leapfrog structure of concern, not stability of individual biquads

Overall leapfrog structure is robust with low passband sensitivities !



Leapfrog Implementations
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Some leapfrog properties
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Integrators Corresponding to Lossless Network 

Instead of having components (such as L’s or C’s) in the image of the lossless 

ladder network there are circuits such as integrators or biquads with more than

one characterization parameters.  Are the sensitivities of |T(jω)| to these 

components also 0 at frequencies where the “parent” passive filter are 0?

What can be said about sensitivities of parameters such as band edges of 

leapfrog filters?  If these sensitivities are not at or near 0, are they at least 

very small?

No!  Nothing can be said about these sensitivities and they are not 

necessarily any smaller than what one may have for other structures such 

as cascaded biquads

Yes!  The following theorem addresses this issue in the case of integrators



Theorem:  If f(u) is a function of a variable u where u=x1x2, then

1 2

f f f
u x xS S S 

Note:  Although the results are the same as for the sensitivity of kf,

in this case both x1 and x2 are variables whereas in the former case

k is a constant.

As a consequence, if the unity gain frequency of an integrator which 

may be expressed (for example) as 1/RC, the transfer function 

magnitude sensitivity to both R and C vanish at frequencies where 

the sensitivity to I0 vanishes



Stay Safe and Stay Healthy !



End of Lecture 30


