EE 508
Lecture 32

Leapfrog Networks



Review from last lecture

Filter Design/Synthesis Approaches
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Review from last lecture

Leapfrog Filters
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This structure has some very attractive properties and is widely used though
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az

Introduced by Girling and Good, Wireless World, 1970

the real benefits and limitations of the structure are often not articulated

Vour



Review from last lecture

Leapfrog Filters

h(s) 1(9) _%g I5(5) W(s) .. .élms) e g VO T
— Integrator — Integrator Integrator — Integrator Integrator — Integrator
ap az

Observation: This structure appears to be dramatically different
than anything else ever reported and it is not intuitive why this
structure would serve as a filter, much less, have some unique and
very attractive properties

To understand how the structure arose, why it has attractive properties,
and to identify limitations, some mathematical background is necessary

Vour



Review from last lecture

Background Information for Leapfrog Filters

Rs

LC +
Network RL Vour

Assume the impedance Rg is fixed
Theorem 1: If the LC network delivers maximum power to the load at
a frequency w, then ST(jw) O

) —

for any circuit element in the system except for x = R,

This theorem will be easy to prove after we prove the following theorem:



Review from last lecture
Implications of Theorem 1

Many passive LC filters such as that shown below exist that have near
maximum power transfer in the passband

RS I—l I—2 L3 L4
‘DUUU m UUUU UUUU +
Vin Ci 1~ Co~ Cs~ Ci~ % R, Vout

If a component in the LC network changes a little, there is little change
in the passband gain characteristics (depicted as bandpass)
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Review from last lecture

Implications of Theorem 1

_ Biquad Biquad Biquad Biquad +
Vln Vout
1 2 3 4

If a component in a biguad changes a little, there is often a large change
in the passband gain characteristics (depicted as bandpass)
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Review from last lecture
Implications of Theorem 1

vV @ Biquad Biquad Biquad Biquad _V+
" T - 2 3 | 4 | Tou
RS Ly L, Ls L4
—6000 6009 6004 6004 T
Vin C. Cor CsrR Car % R Vour

Good doubly-terminated LC networks often much less sensitive to
most component values in the passband than are cascaded biguads !

This is a major advantage of the LC networks but can not be applied practically
in most integrated applications or even in pc-board based designs



Doubly-terminated Ladder Network with Low Passband Sensitivities

Lossless LC Network

For components in the LC Network observe



Doubly-terminated Ladder Network with Low Passband Sensitivities

I v, I3 v, s Ve 17 Vg =V
Vini=Vo = [y, =y, — = — | ot

- (+
Vin (Z Z> Zy Zg Zg

Lossless LC Network

NS
|1:(V0_V2)Y1 )
V, = (|1 — |3)z2 :;ortnprllete stet _of i?g_eagl-tndent equations
at characterize this filter
3 = (Vz _V4)Y3
V,=(l,-1:)Z . . . . :
2 =(l-15)Z, > Solution of this set of equations is tedious
ls = (V= Ve) s
Ve =(Is —17) Z All sensitivity properties of this
L, =(Vs—V,) Y, circuit are inherently embedded in

V, =12, ) these equations!



Consider now only the set of equations and disassociate them from

the circuit from where they came

l, :(Vo _VZ)Yl
V. :(Il_ |3)Zz
5 :(Vz _V4)Y3

Vy=(l3-15)Z,
5 :(V4 _VG)Y5
Ve :(|5_ |7)Z6
I =(Ve—Va) Y5
V; = 1,44

Rewrite the equations as

V] = VQ _V?)Yl

Vo =M _Vs)zz

vV, :(Vg _VI4)Y3

v4'=(v3—v5)z4

Vs :(\/,4 —V )Ys
Ve = (Vs _V76) Zg

V; =(Vs—V5)Y;
V, =V, Z,

\

J
g

>

Make the associations

|1:V1'
|3:V::;
s = V;
I, =V,

Vg =V,

- %
]}

)

£

| | | |
VerVo ey Ve Ve By Ve
)

Lossless LC Network

This association is nothing more than a renaming

of variables so all sensitivities WRT Y’s and Z’s will
remain unchanged!



Consider now only the set of equations and disassociate them from
the circuit from where they came

V1I :EVO _VZ)Yl )

V=M _V3)ZZ For the LC filter, recall {E
s

Vé :(Vz _V4)Y3

—

Lossless LC Network

s 1 1
— (v — Y, = — 7, =——
ve(owzo | ez
Vs = (V,4 _\( )Y5
V= (V5 —Vs Zs And the source and load termination relationships were
- 1
V, =(V; - V,) Y, leR— Zs =Ry
' 1
Vs = V744 J
These can be written as
. 1 . 1
=(%-Ve) =(VaVe)
v, =(v; —V:;)i Ve = (Vi —V})i Observe that in the new
sC, sCq > parameter domain the equations
- 1 all look like integrator functions
V,=(V,-V,)— - 1 . . .
5=V 4)5|_3 \Z :(VG_Vg)sT if the primed and unprimed
, 1 ! variables are all voltages !
V, = (Vs Vs )=




Consider now only the set of equations and disassociate them from

the circuit from where they came

1 ! 1
V1=(V0_V2)R_1 vV, :(V4_V6)I
5
: 1 : 1
\Z :(Vl_VS)g Ve —(V5_V7)f
2 6
1
= ~V,)— 1
V3 (V2 V4)SL3 V7 —( G—VS)ST
7
. 1 .
Va :(V3_V5)f Ve = V7R
4

Vg =Vout

[ [ I
A v, s Ve I
= P MBS Jp s MRS 3

|
Vin=Vo - ‘A 2
Vin

Lossless LC Network

Observe that in the new parameter domain the equations all look like
integrator functions if the primed and unprimed variables are all voltages !

If any circuit is characterized by these equations, the sensitivities to the
integrator gains will be identical to the sensitiviies of the original circuit to

the Ls and Cs |



Consider now only the set of equations and disassociate them from
the circuit from where they came

' 1 | 1 v\:v0 L v;h v vazﬁ v vezj . VZ Vo
V1:(V0_V2)R_ V5=(V4—V6)I {E
1 5 J7

—

' 1 . 1 Lossless LC Network

VZZ(Vl_V3)£ VG—(V5_V7)£
_ 1 L
V3—(V2—V4)£ V, = ( 6_V8)ST
7

. 1 |

Ve :(V?’_V5)f Ve = ViRg
4

Each equation corresponds to either an integrator or summer with the output
voltage output variables and the gain indicated (don’t worry about the units)

—+, ] —H, — —F —F] —f+

R [ V1se Vo s Vs lse T Vels Vs s, Vol e
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Consider now only the set of equations and disassociate them from
the circuit from where they came

' 1 | 1 v;:nv0 By vl e
\/1:(\/0_\/2)R_1 V5=(V4—V6)I {E
5 !

—

' 1 , 1 Lossless LC Network
VZZ(Vl_V3)£ V6—< 5_V7)£
: ‘
V3=(V2—V4)SL3 V7_(V6_V8)SE
7
V4 :(VS_VS)SC V8:V7R8 j
4
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Consider now only the set of equations and disassociate them from

the circuit from where they came
7
s

Lossless LC Network

—

V </_+i _Vy_+1 v +i _V}I/_+1 Vy It 1 V5l/_+ 1 Vs _+1 v +R V
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} s § §
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Integrators Corresponding to Lossless Network



The Leapfrog Configuration

Is I7

=V, 41> J3> Ve 3 Ve & Y,
* *

Lossless LC Network

2

+ Vs + Vo v p Ve + Yo i
v. / 2L/ 1| /L 1 1]
0 B R, __SC2 _s|_3 __sC4 sk _sCq |
S S
| : |
V, = \/in Integrators Corresponding to Lossless Network

Input summing and weighting can occur at input to the first integrator
The difference between V4 and V'; is only a scale factor that does not affect shape,
and the weighting on the Vin input also does not affect shape, thus

V. V.
i Th +1_L+1 /#L+1 e I v
sC, sly || sG sl \ SCq | | | s, out
(@% S =] R,

Integrators Corresponding to Lossless Network




The Leapfrog Configuration

—

Lossless LC Network

VicVo byl Vet Ve B Ve Lo VsV
)

\
Integrators Corresponding to Lossless Network

The terminations on both sides have local feedback around an integrator
which can be alternately viewed as a lossy integrator

Could redraw the structure as a cascade of internal lossless integrators with
terminations that are lossy integrators but since there are so many different
ways to implement the integrators and summers, we will not attempt to
make that association in the block diagram form but in most practical

applications a lossy integrator is often used on the input or the output or
both



Consider the first two stages:

| | |
Vi=Vo »1 3 Ys Va 3 Ys Ve L Y, Vs =Vou
Vin e

— 5

J7 Lossless LC Network
Vv 4_+1_V}I/_+1 \7_+1_\/7l/_+1 Yy | Yy | VYT Y +R V
IN _Rl _SC2 T _SL3 __3C4 _SL5 \ _SC6 __E _ 8 8
[ g [ g I
=T S
S S
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1 2
_ B v
\ﬁ
. 1 =
V) = (Vo _Vz)R_
1 1 )1
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2

—

V, =V, # —V3' L
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These two blocks act as a single summing lossy integrator block with loss factor R,



Consider the last two stages:

y J—+1_\/}'/—+1 Vb | Vb |V v;,/—+ Yo+, Vit
IN R sC, sy | sC sL ‘ sC st _R8
B R In
| : | :
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an1{ n [TV
Vr'1—1 = (Vn—2 _Vn) Ll N 1 -
Sbna S Vn:(vn—Z_Vn)SL Rn
V.=V _R "
V, =V, _ Ry
sL, ; +R,

These two blocks act as a lossy integrator block with loss factor R,




Implementation with Miller Integrators:

Vi v,

+ +
1 1
V|NJ_ Rl_/_SCz V, =V, #—V,;L
- = V, 1+R,Cs 1+R,C.s
S R |
V3
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VIN
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Va +L Vg V. =V 1 1
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Can fix either R or C on each stage



Implementation with OTA-C Integrators:

Vi v,

+ ++
V|N</_|i_/_s(13 V, =V #_V'L
= | = v, 27 "NM14R,C,s ) *l1+R,Cys
\
Vin +
Om1
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| Omt 1
V,—+
A 1 Vv V, =V, 1 V. 1
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Can fix either g,, or C on each stage



The Leapfrog Configuration
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Integrators Corresponding to Lossless Network

In the general case, this can be redrawn as shown below

y W) () _%g I5(5) W(s) .. .élms) (D Me) | Vour
IN
— Integrator — Integrator Integrator — Integrator Integrator — Integrator
ap az

Note the first and last integrators become lossy because of the local feedback




The Leapfrog Configuration

Vi

£

sC,

!
ol

V, V
1ty 15

1
sL

T

Iy
Vin=Vo_— ‘A
Vin

6

| | |
Vo 8 Vi 3 Ve _L
2 Ys 4 — Ys 6 —p Y,

- %
]}

)

£

Vg =V,

s,
[
\

=
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Integrators Corresponding to Lossless Network

The passive prototype filter from which the leapfrog was designed has

all shunt capacitors and all series inductors and is thus lowpass.

The resultant leapfrog filter has the same transfer function and is thus lowpass



The Passive Prototypes with Maximum Power
Transfer in Passband

Doubly-terminated LC filters with near maximum power transfer in the passband
were developed from the 30’s to the 60’s

Seldom discussed in current texts but older texts and occasionally software tools
provide the passive structures needed to synthesize leapfrog networks

One good book is that by Zverev




The Passive Prototypes with Maximum Power
Transfer in Passband

LOW PASS ELEMENT VALUES

37 R
R J_ Lo I Ln

BUTTERWORTH RESPONSE s TC' —|—°3 -0 -I—C" b
n EVEN n ODD
Anaiel T. Zyerev n R C L C L
s 1 2 3 4
1.2000 l.4142 l.4142
l.1111 1.0353 1.8352
1.2500 0.8485 2.1213
1.4286 0.6971 2.4387
1.6667 0.5657 2.8284
2 2.0000 | 0.4483 3.3461
2.5000 0.3419 4.0951
3.3333 0.2447 5.3126
5.0000 0.1557 7.7067
10.0000 0.0743 14.8138
INF . l.4142 0.7071
1.0000 1.0000 2.0000 1.0000
09000 0.8082 1.6332 15994
0.8000 0.8442 1.3840 1.9259
0.7000 0.9152 1.1652 2.2774
06000 1.0225 0.9650 2.7024
3 0.5000 1.1811 0.7789 3.2612
0.4000 1.4254 0.6042 4.0642
0.3000 1.8380 N0.4396 5.3634
02000 2.6687 Ne2842 7.9102
0.1000 5.1672 0.1377 15.4554
INF. 1.5900 1.3333 0.5000
1.0000 D.7654 1.8478 1.8478 ND.7654
l.1111 0.4657 1.5924 1.7439 1.4690
1.2500 0.3882 1.6946 1.5110 1.8109
l.4286 0.3251 1.8618 1.2913 2.1752
4 1L.6667 0.2690 2.1029 1.0824 2.6131
2.0000 0.2175 2.4524 D.8826 3.1868
25000 0.1692 2.9858 N.6911 4.0094
3.3333 0.1237 3.8826 0.5072 S.3381
5.0000 0.0804 S.6835 0.3307 7.9397
10.0000 0.0392 11.0942 ND.1616 15.6421
INF. 1.5307 1.5772 1.0824 0.3827
: : . n | 1/R L
Must start with correct filter type: /" » | % [ [ e
e.g. BW, CC, Cauer)
( g ! ’ Ln
Cn 1.0 1.0

n EVEN n ODD



The Passive Prototypes with Maximum Power
Transfer in Passband

The Butterworth Low-Pass Filters

L2 Ln
R e —t —te
I<+> % § memiCh sm— .0 “ZC, 2tl
- e — —J
n EVEN n 00D

Loading element is a shunt capacitor  (appear from top to bottom in table)

o PR e o
s '/RS LI L3 L,
EE\JJ —F-Cz _rcn 1.0 1.0

n EVEN n ODD

Loading element is a series inductor (appear from bottom to top in table)

Can do Thevenin-Norton Transformations



Transfer In

e 5 L, Cq Ly
1.2000 l.4142 l.4142
le1111 1.0353 1.8352
12500 0.8485 2.1213
1.4286 0.6971 2.4387
1.6667 0.5657 2.8284
2.0000 0.4483 3.3461
2.5000 0.3419 4.0951
3.3333 0.2447 5.3126
5.0000 0.1557 T.7067
10.0000 0.0743 14.8138
INF. l.4142 0.7071
1.0000 1.0000 2.0000 1.0000
0.9000 0.8082 l.6332 1.5994
0.8000 0.8442 1.3840 1.9259
0.7000 0.9152 l.1652 2.2774
0.6000 1.0225 0.9650 2.7024
0.5000 1.1811 0.7789 3.2612
0.4000 1.4254 0.6042 4,0642
0.3000 1.8380 0.4396 5.3634
0.2000 2.6687 N.2842 7.9102
0.1000 S5.1672 0.1377 15.4554
INF. 1.5900 1.3333 0.5000
1.0000 ND.7654 1.8478 1.8478 D.7654%
l.1111 0.4657 1.5924 1.7439 1.4690
1.2500 0.3882 1.6946 1.5110 1.8109
1.4286 D.3251 1.8618 1.2913 2.1752
1.6667 0.2690 2.1029 1.0824 2.6131
2.0000 0:2175 2.4524 0.8826 3.1868
2.5000 0.1692 2.9858 N.6911 4.0094
3.3333 0.1237 3.8826 0.5072 5.3381
5.0000 0.0804 5.6835 D0.3307 7.9397
10.0000 0.0392 11.0942 N.1616 15.6421
INF. 1.5307 1.5772 1.0824 0.3827
1/Rs L, 02 L3 C "

The Passive Prototypes with Maximum Power
Passband

Normalized so R, =1



Rq N Ly Cs by Cs Ls Cq
1,0000 | 0,6180 | 1,6180 | 2,0000 | 1,6180 | 0,6180

0.9000 0.4416 1.0265 1.9095 1.7562 1.3887

0.8000 0.4698 0.8660 2.0605 1.5443 1.7380

0.7000 N.5173 0.7313 2.2849 1.3326 2.1083

0.6000 0.5860 0.6094 2.5998 1.1255 2.5524

0.5000 0.6857 De4955 3.0510 0.9237 3.1331

0.4000 0.8378 0.3877 3.7357 0.7274 3.9648

0.3000 1.0937 0.2848 4.8835 0.5367 5.3073

0.2000 1.5077 0.1861 7.1849 0.3518 T.9345

0.1000 3.1522 0.0912 14.0945 0.1727 (15.7103

INF., 1.5451 1.6944 1.3820 0.8944 0.3090

1,0000 | 0,5176 | 1,M1k2 [1,9319 |1,9319 | 1.,k1k2 | 0,5176

L) I 1 0.2890 1.0403 1.3217 2.0539 1.7443 1.3347

l1.2500 0.2 445 1.1163 141257 2.2389 1.5498 1.6881

1.4286 0.2072 1.2363 0.9567 2.4991 1.3464 2.0618

l.6667 0.1732 1.4071 0.8011 2.8580 l.1431 2.5092

2.0000 D.1412 1.6531 0.6542 3.3687 0.9423 3.0938

25000 N.1108 2.0275 0.5139 44,1408 0.7450 3.9305

3.3333 0.0816 2.6559 0.3788 54325 0.5517 5.2804

5.0000 0.0535 3.9170 N.2484 8.0201 0.3628 T7.9216
10.0000 0.0263 717053 0.1222 (15.7855 0.1788 15.7375

INF. 1.5529 1.7593 1.5529 1.2016 0.7579 0.2588

1,0000 | o,4k450 | 1,2470 | 1,8019 | 2,0000 | 1,8019 | 1,2470 | 0, 4450
0.9000 0.2985 D.7111 1.4043 1.4891 2.1249 1.7268 1.2961
N0.8000 043215 0.6057 1.5174 1.2777 2.3338 1.5461 1.6520
0.7000 0.3571 0.5154 1.6883 1.0910 2.6177 1.3498 2.0277
0.6000 0.4075 ND.4322 1.9284 0.9170 3.0050 1.1503 2.4771
05000 N0.4799 0.3536 2.2726 0.7512 3.5532 0.9513 3.0640
0. 4000 0.5899 0.2782 27950 0.5917 4.3799 0.7542 3.9037
0.3000 0.7745 0.2055 3.6706 0.4373 5.7612 N0.5600 5.2583
042000 1.1448 0.1350 5.4267 0.2874% 8.5263 0.3692 7.9079
0.1000 242571 0.0665 10.7004 Nelsal?7 16.8222 N.1823 15.7480

INF. 19576 1.7988 1.6588 1.3972 1.0550 N0.6560 0.2225

1/Rs L, C, L, C, L, Ce L,




Example:

Design a 6M-order BW lowpass Leapfrog filter with equal source and load
terminations, and with a 3dB band edge of 4KHz.

Start with the normalized BW lowpass filter

(appear from top to bottom in table)

Do Norton to Thevenin transformation at input



=

U,0180

11,0000 00,6180 11,6160 2,0000 1,06180
0.9000 0.4416 1.0265 1.9095 1.7562 1.3887
0.8000 0.4698 0.8660 2.0605 1.5443 1.7380
0.7000 N.5173 0.7313 2.2849 1.3326 2.1083
0.6000 0.5860 0.6094 2.5998 1.1255 2.5524
5 0.5000 0.6857 De4955 3.0510 0.9237 3.1331
0.4000 0.8378 0.3877 3.7357 0.7274 3.9648
0.3000 1.0937 0.2848 4.8835 0.5367 5.3073
0.2000 1.5077 0.1861 7.1849 0.3518 T.9345
0.1000 3.1522 0.0912 14.0945 0.1727 (15.7103
INF., 1.5451 1.6944 1.3820 0.8944 0.3090
1,0000 | 0,5176 | 1,41k2 |1,9319 |1,9319 | 1.41%2 [ 0,5176
g Syl e B o oS5 e T eT
1.2500 0.2 445 1.1163 141257 2.2389 1.5498 1.6881
1.4286 0.2072 1.2363 0.9567 2.4991 1.3464 2.0618
l.6667 0.1732 1.4071 0.8011 2.8580 1.1431 2.5092
6 2.0000 D.1412 1.6531 0.6542 3.3687 0.9423 3.0938
2.5000 ND.1108 2.0275 0.5139 44,1408 0.7450 3.9305
3.3333 0.0816 2.6559 0.3788 54325 0.5517 5.2804
5.0000 0.0535 3.9170 N.2484 8.0201 0.3628 T.9216
10.0000 0.0263 T+1053 0.1222 [15.7855 0.1788 15.7375
INF. 1.5529 1.7593 1.5529 1.2016 0.7579 0.2588
1,0000 | o,4k450 | 1,2470 | 1,8019 | 2,0000 | 1,8019 | 1,2470 | 0, 4450
0.9000 0.2985 0.7111 1.4043 1.4891 2.1249 1.7268 1.2961
N0.8000 043215 0.6057 1.5174 1.2777 2.3338 1.5461 1.6520
0.7000 0.3571 0.5154 1.6883 1.0910 2.6177 1.3498 2.0277
0.6000 0.4075 ND.4322 1.9284 0.9170 3.0050 1.1503 2.4771
T 0.5000 0.4799 0.3536 2.2726 0.7512 3.5532 0.9513 3.0640
0. 4000 0.5899 0.2782 27950 0.5917 4.3799 0.7542 3.9037
0.3000 0.7745 0.2055 3.6706 0.4373 5.7612 N0.5600 5.2583
042000 1.1448 0.1350 5.4267 0.2874% 8.5263 0.3692 7.9079
0.1000 242571 0.0665 10.7004 Nelal7 |16.8222 N.1823 15.7480
INF. 19576 1.7988 1.6588 1.3972 1.0550 N0.6560 0.2225
n 1/Rs L, C, L, C, L, Cq L,

R.=1, C,=.5176, L,=1.414, C,=1.939, L,=1.9319, C.=1.4142, L,=0.5176

Note index differs by 1 from that used for Leapfrog formulation




EI

+ _/—+ 1 + —+ + + —+ +
a 1 1 T 1 /o 1 -
Vo Vi sC, “_/\Z sL, || Vs sC, Vy sL, \ Vs sCs sL, v
\

r— ,_— N j - ’_— N #_ ’i—L S j—

Labeled voltages are single-ended voltages at “+” inputs to the integrators

Changing the index notation:
R,=1, C,=.5176, L,=1.414, C,=1.939, L,=1.9319, C,=1.4142, L,=0.5176
Implement in the technology of choice
Combine loss on input and output integrators to eliminate two stages
Do frequency denormalization to obtain band-edge at 4KHz

Do impedance scaling to obtain acceptable component values



Bandpass Leapfrog Structures

Consider lowpass to bandpass transformations

Un-normalized
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Bandpass Leapfrog Structures

Bandpass Leapfrog Structure obtained by replacing integrators
by the corresponding transformed block

Zero sensitivity to parameters in the transformed blocks will be
retained at the image frequencies of the bandpass filter
2 2
S™+ W
—>

Sn
sBW

1 sBW 1 sBW
S—_) 2 2 2 2
n ST+ Wy S, ta  s"+saBW +w,

Integrators map to bandpass biquads | gssy integrators map to bandpass biquads
with infinite Q with finite Q



Bandpass Leapfrog Structures
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Bandpass Leapfrog Structures
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Integrators Corresponding to Third-order lowpass
Lossless Network leapfrog filter
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Biquads Cor respondlng to Lossless Network

Sixth-order bandpass
leapfrog filter



Bandpass Leapfrog Structures
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“Loss” at input and/or output can usually be incorporated into finite-Q
terminating biquads instead of requiring additional voltage amplifiers



Bandpass Leapfrog Structures
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Biquads Corresponding to Lossless Network

« The bandpass biquads can be implemented with various architectures and the
architecture does not ideally affect the passband sensitivity of the filter

* Integrator-based biguads are often used in integrated applications

* Note the lossless biquads are infinite Q structures !

Is it easy or practical to implement infinite Q biquads?

Are there stability concerns about the infinite Q biquads?



Bandpass Leapfrog Structures
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Integrator-based biquads

/}\ BW
% + o
< L s
- -s_¥-s
fes | 2
0 s

S [

sssssssssssssssssssssssssssssssssss

s(Bw/c)

2 2
S° + Wy

s(Bw/c)

&

V

S° +SaBW + W}



Bandpass Leapfrog Structures

Integrator-based biquads OTA-C Implementations
(Concept)

Infinite Q bandpass biquad

+ BW.
(b +& J-l-& Cw
_ S -s
s(Bw/c)
T(s)=
(5) 5% + W5

+ BW
T, JT“L%J;L
s+ _s
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(Not Differential)



Bandpass Leapfrog Structures

Integrator-based biquads OTA-C Implementations
Infinite Q bandpass biquad

+ BW
—®7+ + e
Wy Lowy | o

-S -S

Multiple inputs can be added to lossy integrator too!



Bandpass Leapfrog Structures
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Biquads Corresponding to Lossless Network

Note the lossless biquads are infinite Q structures !

Is it easy or practical to implement infinite Q biquads?

Yes — have shown by example in g,-C family and also easy in other
families

Are there stability concerns about the infinite Q biquads?

Stability of overall leapfrog structure of concern, not stability of individual biquads
Overall leapfrog structure is robust with low passband sensitivities !



Leapfrog Implementations
Fifth-order Lowpass Leapfrog with OTAs

AN N VAN
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y 1 v _vV Im
1 Rl( n—Vz) V, = SC4 (Vs_VS) V%:(gmngVG
ng Im
V, = S 2(V1—V3) Vs = CS(V4_V6)

gm O
' C3 C6 !
V. =T(V2—V4) V, = S (V5—V7)
Practically can either fix g,,s and vary capacitors or fix capacitors and vary g,,'s




Some leapfrog properties
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Integrators Corresponding to Lossless Network

What can be said about sensitivities of parameters such as band edges of
leapfrog filters? If these sensitivities are not at or near 0O, are they at least

very small?

No! Nothing can be said about these sensitivities and they are not
necessarily any smaller than what one may have for other structures such

as cascaded biquads

Instead of having components (such as L's or C’s) in the image of the lossless
ladder network there are circuits such as integrators or biguads with more than
one characterization parameters. Are the sensitivities of |T(jw)| to these
components also 0 at frequencies where the “parent” passive filter are 07

Yes! The following theorem addresses this issue in the case of integrators



Theorem: If f(u) is a function of a variable u where u=x;x,, then

s =6, =%,

Note: Although the results are the same as for the sensitivity of kf,
in this case both x; and x, are variables whereas in the former case
k is a constant.

As a consequence, if the unity gain frequency of an integrator which
may be expressed (for example) as 1/RC, the transfer function
magnitude sensitivity to both R and C vanish at frequencies where
the sensitivity to |, vanishes
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Stay Safe and Stay Healthy !







